Design of a Representative Volume Extraction System (RVES)

Mark Bacon Aaron Crenshaw Matt Rice

Project Goal

 Design a system to reduce the time, effort, and cost required to analyze a solid-liquid mixture by taking a verifiable, representative volume from a larger sample.

Sub-sample Specifications

- Same sediment concentration
- Same particle size distribution
- With a maximum of 10% error

Objectives and Constraints

- Be accurate and precise
- Cost less than \$2500 to prototype
- Retail for approximately \$2000
- Require less than 10 minutes per sample

Specific Application

Overview

- Theory behind vertical flow divider
- Prototype
- Resource and budget list
- Operation of system
- Testing and results

Theory behind vertical flow divider

Horizontal Flow

Theory behind vertical flow divider

Vertical flow

Two phase mixture of sediment and water

No settling along a surface parallel to the flow

Therefore the particles remain dispersed over the cross section of the flow

Same two phase mixture of sediment and water

• Splitters

• Funnels

• Hopper

• Valve

rubber stopper attached to a piece of 2 in. PVC pipe, 24 in. long

• Spillways

• Frame

- 16 lb tipping force

Resource and budget list

Component	Materials cost (\$)	Labor Costs (\$)	Fabrication cost (\$)
splitters (3)	NA	NA	804
funnels (3)	61	60	121
spillways (3)	NA	NA	645
frame	56	100	156
hopper	55	60	115
Grand total			\$1841

- Insert valve
- Transfer liquid/solid mixture to hopper
- Rinse bucket with mixture until there is no sediment
- Lift valve 1 in. to allow mixture to flow through system

- Ergonomic considerations
 - Transfering mixture to hopper
 - Revised NIOSH Lifting equation – worst case 25 lbs
 - Alternative transfer methods:
 - Platform method
 - Dipping method

- Ergonomic Considerations
 - Platform method

- Ergonomic Considerations
 - Dipping method

System Utilization

- Volume of water
- Mass of sediment
- Sediment adsorbed particles

Testing and Data Analysis

- Explanation and justification of testing procedure
- Method of Testing
- Results

Explanation and Justification of Testing Procedure

- Mass measure
 - Volume of water
 - Mass of sediment
- Particle Size Distribution Analysis (PSDA)
 - Hydrometer method
 - Wet sieve

Method of Testing

- 10% sand, 50% sand, 80% sand soil types
- 1 kg/8 L water, 3.5 kg/8 L water
- 4 reps of each
- Each sample measured before and after going through RVES

Results

• Volume of water

% Error by Mass			
	10%	50%	80%
1 kg sediment	6.7	6.6	13
3.5 kg sediment	11	14	9.0

Results

Mass of sediment

% Error by Mass			
	10%	50%	80%
1 kg sediment	8.8	16	18
3.5 kg sediment	18	23	18

Results

• SSA

% Error by Mass			
	10%	50%	80%
1 kg sediment	3.6	15	17
3.5 kg sediment	1.4	11	22

Sources of error

- Fabrication tolerances
- PSDA variation
 - -~12% hydrometer
 - -~4% wet sieve
- Human error

Recommendations for a second generation

- Splitter design
 - Center rod
 - Less fabrication time
- Spillway design
 - Should not support funnels

Questions?