

Biomass Automated Densification Device B.A.D.D.!

Erin Byers Kimberly Geary Boone Hillenbrand Andrew Smith

The Need

- \$70 million dollar "Biofuels Initiative" project funded by the state of Tennessee
- The plant being constructed will have the capacity to produce 5 million gallons of cellulosic ethanol each year
 - Requires approximately 170 tons of biomass per day

How will the plant efficiently receive this large quantity of material? How has this been done before?

Cotton Module Builders

- Cotton logistics were aided by development of module builder
- Their Function
 - Compress cotton / reduce volume
 - Aid in transportation of large quantities of material

Module Trucks

- Engineered to load module without shearing
 - Backs up while chains roll module onto platform
 - Platform at 15° with ground
- Transports modules from field to gin

A Switchgrass Solution?

- Cotton module builders greatly helped the cotton industry
- Can farmers get more out of purchased cotton equipment?
- We know we can build them, but will they stay together?

Need and Project Purpose

- Need: A research tool to investigate switchgrass module building / loading at a smaller scale
 - Scaling it Down:
 - It takes a lot of time and switchgrass to build a full size module!
 - Use Dimensional Analysis and Similitude to make a Mini-Module
- Purpose:
 - Design, Build, and Test a "tabletop" model of a module builder
 - Design, Build, and Test a device to simulate a module loading truck

Criteria for Success

- Cotton
 - Similar module density
 - Module builder can be removed without disturbing module
 - Module can be successfully loaded
 - Systematically determine tamping pattern
 - Use sensors to examine pressure distribution

- Switchgrass
 - Judge differences in module integrity during removal and loading
 - Follow tamping process perfected with cotton
 - Compare parallel data
 between switchgrass and
 cotton

Design Process

- Conceptualization and Brainstorming
- Design and AutoCAD
- Procurement and Fabrication
- Testing and Experimental Design
- We integrated many engineering areas in this project:
 - Dimensional Analysis
 - Hydraulic Circuit Design
 - Power Transmission
 - Strength Analysis
 - Electronics

Dimensional Analysis and Similitude

- Does the model represent a field size module builder?
 - Width and height 1:3.75 scale
 - Wall effect minimized
 - Tamper foot pressure
 - II psi
 - Tamper foot speed
 - 18 inches per second
 - I:12 module wall angle
 - 15 degree loading angle

System Components

Module Box

- Z-rib design creating 1:12 wall angle
- Easy-to-remove door with locking pins
- Hydraulics lift box evenly
- Lexan walls to visualize compression

Tamper Design

- Tamper foot sized from dimensional analysis
- Bridge sized to support an II psi pressure on biomass
- Tamper operated hydraulically
 - Guide rails ensure perfectly vertical movement

Hydraulic Schematic

Bridge Movement

- Resists downward tamper force
- Moves tamper bridge along module
- Hand operated crank follows mounted gear rack
- V-groove wheels on angle track keep bridge aligned
- C-channel selected for fit and strength
- Rubber stoppers at ends for safety

Loader

Loader

- Optimized to pick up module
 - 15° ramp angle
 - Belt pulley chosen for very small front nose
 - Belt speed harmonized with forward speed of loader
- Spur gears for positive traction
- Motor, chain drive selected to work together for precise speed
- Perfectly aligned forward movement

Testing

- Density
 - Weight per volume
- Tamping Pattern
 - Field observation
 - Calculation / Energy approach
- Fill Depth
 - Amount added before tamping
- Tamping Pressure — II psi field and model
- Pressure Profile
 - Pressure transducer testing

Pressure Profile

• Use pressure transducers to generate a pressure profile for both cotton and switchgrass

Testing Results Cotton

Next Generation Considerations

- Tandem wheels on bridge for more even bridge movement
- Gear guard on loader
- Automated clamps to hold down builder while operating
- User Manual / Safety Stickers
- Create array of many sensors for detailed pressure profile data

How This Tool Will Be Used

- To identify issues with making modules of switchgrass
- To investigate the effects of:
 - Switchgrass chop length
 - Moisture content
 - Novel additives
 - Number and duration of tamps
- To improve the integrity of switchgrass modules

Conclusions

- Met criteria for success
 - Simulates a full-scale module builder
 - Module density within desired range
 - Cotton Module 7.5 pounds per cubic foot
 - Switchgrass Module 4.8 pounds per cubic foot
 - Module holds together
 - Module loads without breaking apart

Special Thanks

- Dr. Al Womac
- Craig Wagoner
- Dr. Don Tyler
- Dr. Stacy Worley
- David Smith
- Dr. Willie Hart
- Our 104 Students

• The Biosystems Engineering and Soil Science Department

