Design of a Silt Fence Alternative

Chris Dixon and Brent Pilon

May 23, 2008

Customer Need

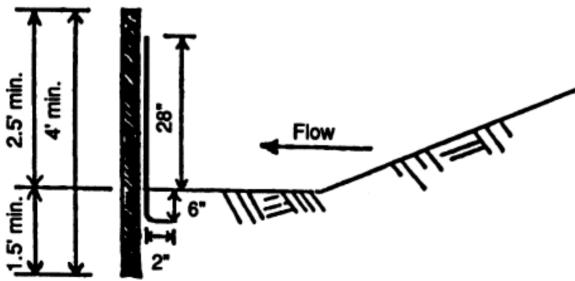
Silt fence: reduces sediment leaving disturbed sites

- Pond runoff
- Allowing for settling
- Release effluent
- Significant problems:
 - Incorrect installation
 - Clogging of membrane
 - Downslope erosion/reduced trafficability

Design a comprehensive alternative to current silt fence technology (both product and implementation) that is relatively inexpensive and easy to install while avoiding the major problems of the silt fence.

www.swwrc.wsu.edu/.../images/Sedimentation.jpg

Who Cares?



Silt Fence

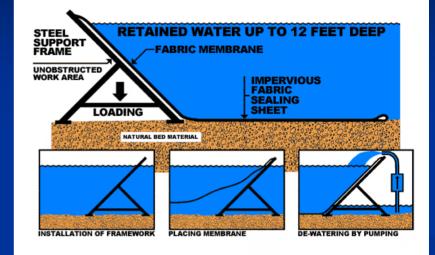
Inexpensive, readily availableSimple install

Silt Fence – Type A

Source: TDEC Structural Practices Manual

Silt Fence Problems

- Ponding, filtering, or diversion?
- Pores of permeable membrane clog
- Contribute to downslope erosion/reduced trafficability


Performance Criteria

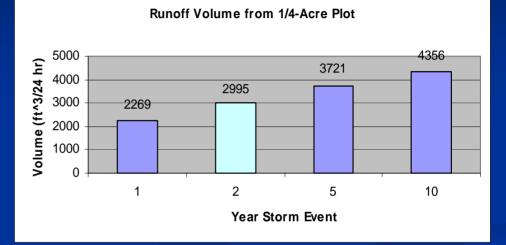
Ease of Installation Sediment Capture Efficiency Greater Structural Integrity Required Maintenance between storm events Reduce Downslope Erosion Reduce Clogging **Failsafe Overflow Mechanism** *Cost-effective*

Conceptual Design

Comparison of alternatives:

- Examined flocculants, erosion control blankets, fiber filter tubes, etc
- Liked settling of basin/skimmer dewatering apparatuses
 - Required on all sites > 10 acres, deemed most effective method
- Liked *Portadam*/reinforced silt fence
- Hybrid fence/basin apparatus:
 - Reinforced fence structure
 - Impermeable plastic lining
 - Floating skimmer outlet system

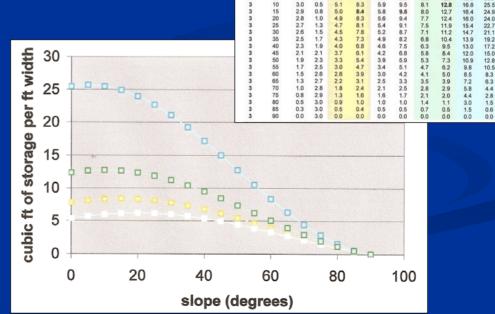
Subsystems


Runoff detention structure Impermeable membrane Floating skimmer outlet system Emergency overflow

Design Demands

Knoxville design storm

- 2 year, 24 hour design storm
- 2" runoff



City of Knoxville Land Development Manual Stormwater and Street Ordinance

Volumes/Slopes/Spacings

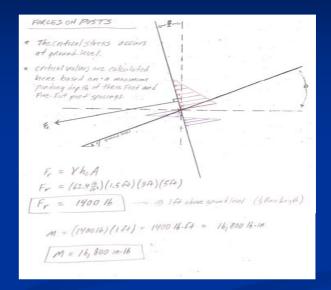
100 ft intervals = 25% more work space
Target Release Rate + Slopes = 3 ft fence

slope 30

0.3 5.2

26.56

6.0


12.1

25.7

Fence Structural Details

Fence Structural Details

Membrane Details

Emergency Spillway

Spillway:

- Recommend rectangular weir:
 - 19" x 4"
 - 100 yr, 30 min storm
- Rip rap

$$Q = C_e \frac{2}{3} \sqrt{2g} (b + K_b) (h + K_h)^{3/2}$$

Floating Skimmer Outlet

JINIJSEI Vel CIN

Skimmer Flow

Buoyancy:

- Water displacement
- Half as dense as water: floats
- Sized hose using Hazen-Williams formula
 - Outlet 1 ¹/₂" below surface when floating
- Flow controlled by outlet or hose?
 - Compared weir/orifice flow with pipe flow calculations
 - Outlet behaves as orifice

Performance Criteria (basis for test tasks)

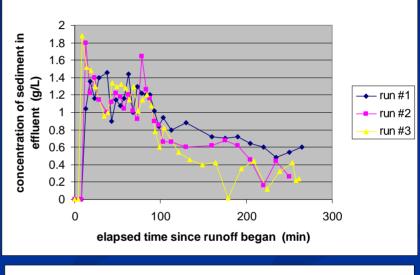
- Ease of Installation
- Sediment Capture Efficiency
- Greater Structural Integrity
- Required Maintenance between storm events
- **Reduce** Downslope Erosion
- Reduce Clogging
 Failsafe Overflow Mechanism
 Cost-effective

Task 1 - Installation

Compare / contrast ease of installation of the SF and OA

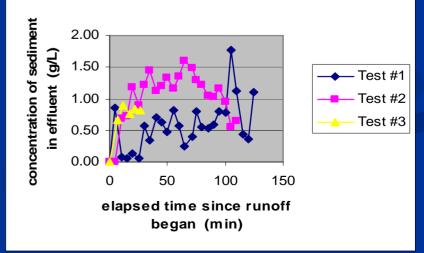
- 2000 ft² Catchment Area
- Installed Manually
 - SF:
 - Trenching difficult
 - Lightweight/few parts
 - OA: *WINNER*
 - Membrane easy to install
 - Bulkier/more complicated

Procedures for Tasks 2-7


- Side by side test (x 3 trials each)
- Document any pertinent observations pertaining to performance criteria
- Simulated 2 yr, 24 hr storm peak runoff period:
 - 48 kg soil
 - 21.5 gpm
- Attempted to keep all storm events for each device as similar as possible

Task 2 – Capture Efficiency

 Average overall capture efficiency


OA: 93.0%
WINNER

■ SF: 91.5%

Our Alternative - Runs 1-3

Silt Fence - Tests 1-3

Task 3 – Downslope Erosion Compare the likelihood of the devices causing downslope erosion or poor trafficability

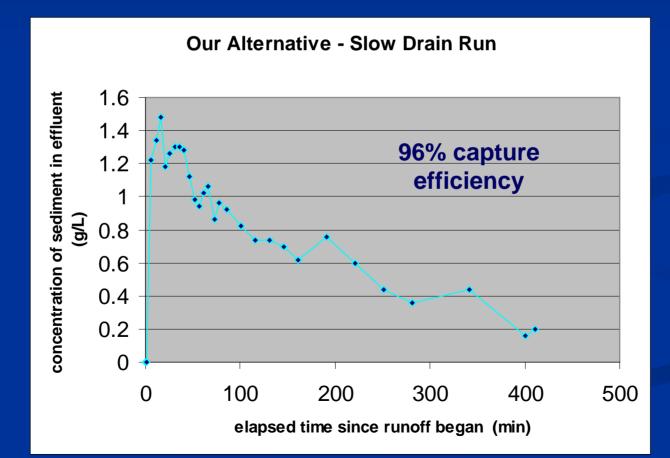
Task 4 - Clogging

Compare the susceptibility of the devices to clogging during sequential events

Task 5 – Structural Integrity

Compare the structural integrity of both devices based on their ability to remain functionally intact over the course of multiple storm events

Task 6 - Maintenance


Compare upkeep and maintenance required between events for each device

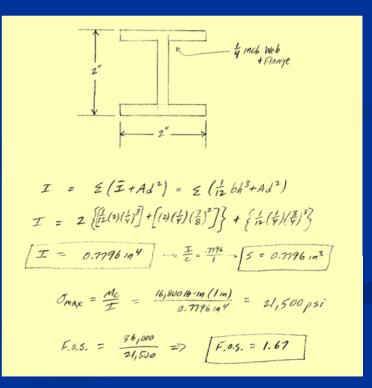
Task 7 – Long Detention Run Obtain a relationship between effluent release rate and capture efficiency for Our Alternative

Task 8 - Economic Analysis

Cost of materials per 100 ft installation:
 Assuming installation labor costs equal
 SF: \$30
 OA: \$575

BUT – considering cost of maintenance and materials due to *failures* over the course of a year even when the SF installed correctly, OA an economical alternative

Conclusions


Performance Criteria Winners		
Our Alternative		Silt Fence
\checkmark	Ease of Installation	
\checkmark	Capture Efficiency	
\checkmark	Structural Integrity	
\checkmark	Maintenance	
\checkmark	Downslope Erosion	
\checkmark	Reduce Clogging	
\checkmark	Overflow Mechanism	
\checkmark	Cost Effectiveness	

2nd Generation Suggestions

Screen on skimmer to prevent debris from entering outlet

Custom I-beam

Longer detention times

Our Alternative is Your Alternative.