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Random amplified polymorphic DNA (RAPD) markers were used as input for an analysis of molecular
variance (AMOVA), homogeneity of molecular variance analysis (HOMOVA), and cluster analysis to
describe the population genetic structure of Jliamna corei, a federally endangered plant located only in
Virginia, and I remota, a rare plant in Virginia, Indiana, and Illinois. The analysis was performed to help
clarify the taxonomic relationship between the two closely related species. We analysed four clones in the
only known population of 1. corei, breeding stock derived from seeds originating from the population site,
and three I remota populations in Virginia. Eighty-five percent of screened primers revealed DNA
polymorphisms in Iliamna. Ninety-nine informative markers were generated using seven primers. No
significant statistical differences (at P = 0.05) in RAPD variation was found between species (24% of
variance) using the AMOVA procedure. However, within species/among populations (31% of the
variance) and within populations (45% of the variance) there were significant differences (P < 0.002). An
unweighted paired group method using arithmetic averages (UPGMA) cluster analysis showed the
federally endangered /. corei population to be genetically distinct from the apparently recently introduced
(in Virginia: ~ 100ybp) I remota. The lack of significant differences from the AMOVA and the high
number shared bands between I corei and I remota suggest that I corei may be more appropriately
classified as a subspecies of /. remota. Iliamna corei plants in the natural population were genetically similar
to one another while the I coret breeding stock plants and 1. remota plants were genetically relatively
diverse.
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INTRODUCTION

Ihamna is a North American genus of the Malvaceae containing seven or eight
species. Most of the species are indigenous west of the Mississippi River. However,
two species are found exclusively in the east: I corei and 1. remota. They have showy,
insect-pollinated, perfect flowers, and are self-incompatible (T. Wieboldt and J.
Randall, unpublished data). lliamna corei (Sherff) Sherff, the Peters Mountain mallow,
is a federally endangered plant species that exists naturally in a single population, on
Peters Mountain, Giles County, Virginia, USA) (Fig. 1). This population consists of
four clumps, each comprising a clone (Stewart & Porter, 1995). The Peters Mountain
site is a sandstone cliff (1000m elevation) above the New River. Seeds were
unearthed from the site and germinated. The resulting plants were used to establish
a breeding population on the campus of Virginia Polytechnic Institute and State
University, Blacksburg, Virginia. liamna remota Greene, the Kankakee mallow, is a
rare species that was first collected on Altorf Island in the Kankakee River, Illinois
(Strausbaugh & Core, 1932). The species apparently has spread eastward along
railroad lines to Virginia (Porter & Wieboldt, 1991). In contrast with the mountain-
dwelling I: corei, the Virginia I. remota populations are located near the James River,
not unlike the I remota habitat in Illinois.

Since the discovery of . corei (Strausbaugh & Core, 1932), the proper taxonomic
placement of the taxon has been in question. Strausbaugh & Core (1932) placed 1
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Figure 1. The sites sampled for mallow DNA in Virginia, USA. See Table 3 for population
abbreviations.
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cores In the same species as 1. remota (Phymosia remota (Greene) Britton) on the basis of
similar morphological features. Sherff (1946) revised the classification such that the
Kankakee mallow was recognized as I. remota var. typica and the Peters Mountain
mallow was renamed 1. remota var. corei Sherfl. The basis for this split was a difference
in leaf morphology (the Kankakee mallow leaf typically has a broadly triangular
terminal lobe subtended by obtuse sinuses, while the Peters Mountain mallow leaf
has an oblong terminal lobe with sharp sinuses), leaf size (Kankakee mallow is larger
than Peters Mountain mallow), and plant height (Kankakee mallow, 1.0-1.7 m;
Peters Mountain mallow, 0.6—-0.9 m). Three years later Sherff (1949) further split the
taxa into two species, I remota Greene and I corei (Sherff) Sherff, on the additional
characters of differing corolla colors (1. corei has a deeper hue), and floral odor (1.
remota is scented whereas 1. corei is not). Therefore, the division of I remota and I. core
was based upon very few different morphological characters observed on plants
growing in ecologically diverse natural habitats. It is conceivable that the characters
used by Sherff in separation of the species are plastic. Plastic traits are defined as
those that vary in response to spatial (edaphic and geographic), and temporal
heterogeneity, and are known to confound taxonomic classifications (Schlichting,
1986). For example, we have noticed that plants in the breeding population are taller
than those on Peters Mountain. Likewise, Bounds (1992) reported that there are
statistically significant i situ morphological differences between the population of 1.
corei and 1. remota populations in Virginia. In addition, Strausbaugh & Core (1932)
reported the height of I coret on the mountain site approached 2m, although in
recent years, the stems have been shorter. Common garden studies would be
appropriate to control for differences among Iliamna sites. However, to our
knowledge, no data stemming from common garden comparisons between 1. corei
and I. remota have ever been published, although Sherff (1949) and Scott (1973)
reported growing them together in such a situation. An alternative to phenotype
analysis to delineate taxa is to perform genetic analysis, which is, by nature, not
affected by environment. However, there has been limited work using genetic
markers in /liamna. Bounds (1988) reported apparent polymorphisms in five isozymes
of I corei and I. remota with interclonal variation found in I corei. In a preliminary
random amplified polymorphic DNA (RAPD) study, two primers were used to
distinguish clones (Stewart & Porter, 1995). No formal population-level analysis has
been published to date.

Methods have recently been developed to utilize RAPD profiling (Welsh &
McClelland, 1990; Williams et al, 1990) in formal population genetic analyses
(Lynch & Milligan, 1994; Stewart & Excoffier, 1996). Although numerous DNA
polymorphisms may easily by revealed using RAPDs, the markers are primarily
dominant, i.e. homozygotes are indistinguishable from heterozygotes (Tinker, Fortin
& Mather, 1993; Williams ¢t al., 1993). Stewart & Excoffier (1996) have modified the
analysis of molecular variance (AMOVA) technique (Excoffier, Smouse & Quattro,
1992), adapting it for use with dominant markers. In short, they used estimated
amounts of autogamy (selfing frequency from 0 to 1.0) to estimate the average
genotype frequencies from the phenotypic (RAPD) data. These estimates were then
used in the AMOVA. The AMOVA partitions variance to hierarchical levels, e.g.
among and within populations, and tests for significance at these predefined levels,
similar to an analysis of variance (ANOVA).

The objectives of our study were threefold: (1) identify population-level genetic
markers in I corei and I. remota; (2) provide baseline data on the genetic variability of



360 C.N. STEWART ET AL

1. corei and I. remota and (3) clarify the taxonomic relationship between I remota and
I corei. Our approach was to use RAPD markers in a population genetic analysis.
This represents the first use of the AMOVA for RAPDs to analyse an obligately
outcrossing plant species, although Stewart & Excoffier (1996) used it for Vaccinium
macrocarpon (Ericaceae), a selfing species, and Huff, Peakall & Smouse (1993) used an
earlier version of AMOVA, which had not been modified for RAPD data, to analyze
obligate outcrossing Buchloe dactyloides (Poaceae). Our approach was to assume that
each surveyed population of lliamna (not including the one I rivularis sample we
included for comparative purposes) were members of a panmictic metapopulation.
The AMOVA, a permutational statistics package, tests for population substructuring
and will indicate whether significant molecular differences exist within and among
local breeding populations. More importantly, the AMOVA will also indicate
whether or not significant molecular differences exist between I remota and I corei.
The null hypothesis tested is that there is no subdivision at the population and species
levels. The associated permutational homogeneity of variance procedure (HOM-
OVA) tests whether population genetic heterogeneity is significantly different among
populations. This procedure is of particular interest in rare species and conservation
biology as it tests whether some populations are genetically more depauperate than
others.

MATERIAL AND METHODS
Sampling strategy

The 1. core: (PM) population (Peters Mountain and Garden) was discussed above,
and the clonal structure is presented in more detail in Stewart & Porter (1995). We
sampled the three sites in Virginia where I remota could be found in June, 1992 (Fig.
1). The largest population was the Mallow Preserve population (MP), located
adjacent to a railroad line, and protected by The Nature Conservancy. The
population consisted of randomly-spaced clumps of plants, assumed to be single
clones. We randomly sampled plants along two transects. Located a few kilometers
down-track was the small Iron Gate population (IG), located between a railroad
track and road, and across the street from a large factory. The population consisted
of only four clumps of plants, all of which were sampled, but only three of which
yielded products in the RAPD analysis. This population appeared to be regularly
mowed as part of road maintenance. The third population was located alongside
Interstate 64 (I). It differed from the other two populations in that it was located
farther from the railroad line, and consisted of a single 10 m long, 3 m wide oblong
clump of plants. We samples every fifth stem along a transect that ran through the
length of the clump. A fourth 1. remota population was located in Bedford County,
Virginia near the James River. However, this population could not be sampled in
1992 because of flooding. For comparative purposes, we also included a DNA
sample of 1. rivularis from Cache County, Utah.

RAPD profiling and statistical analyses

We used fresh leaf tip samples as a source of DNA. DNA extraction, a rapid
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miniprep, and RAPD profiling methods are described elsewhere (Stewart & Via,
1993). The raw data for all analyses was a band presence (1)/absence (0) rectangular
matrix taken from the composite RAPD profile of each sample (Table 1). Missing
data (?) were not analyzed by the AMOVA. The composite profiles were generated
from the suite of primers we used in the RAPD reactions: OPA2 (5'
TGCCGAGCTG), OPA3 (5' AGTCAGCCAC), OPAI3 (5' CAGCACCCAQ),
OPA16 (5' AGCCAGCGAA), OPBI0 (5' CGTCTGGGAQ), CA 947 (5' CCAAC-
CACCC), GT 947 (5' GGGTTGGTG). OP primers are from Operon Technologies
(Alameda, California), and CA and GT primers were designed by Dr Douglas
Rhoades (University of Arkansas-Fayetteville). Genetic distances were estimated
using euclidean squared distances as discussed in Huff ef al. (1993) and Stewart &
Excoffier (1996) (Table 2). We used a non-parametric AMOVA procedure originally
described in Excoffier et al. (1992) as modified by Stewart & Excoffier (1996) to
describe population structuring and variability among populations. The associated
HOMOVA was used to test for significant molecular variance homogeneity among
populations. The I. rivularis sample was excluded from these analyses. In the
AMOVA and HOMOVA, we used a hierarchical nested analysis with individuals
gathered into populations which were, in turn, gathered into species (Fig. 2). We also
performed an unweighted paired group method using arithmetic averages (UPGMA)
cluster analysis to produce a dendrogram as a visual aid (Rohlf, 1988). We used the
Mantel test to test for goodness-of-fit between a cophenetic (ultrametric) matrix,
which was derived from the UPGMA dendrogram and the genetic distance matrix
(Mantel, 1967; Rohlf, 1988). This matrix comparison approach is described further
in Stewart & Nilsen (1995).

RESULTS
RAPD profiling

The primary focus of this paper is to delineate the taxonomic of I corei and I. remota
to one another using RAPD markers in a population genetics framework. RAPDs
have been used before in the population genetics of rare and endangered species,
although analyses have typically been qualitative and not quantitative (see
Discussion). The primary attractive factors of RAPDs in conservation studies are the
ease of methodologies, abundant polymorphisms, and the small amount of tissue
needed for analysis. Indeed, over-collecting by botanists is cited as being an
important factor in I corer’s decline on Peters Mountain (Porter & Wieboldt, 1991).
In the case of I corei, only four plants were in existence in nature in 1992, so it was
not desirable to sacrifice much tissue. Our methodologies required only a fraction of
one leaf per plant.

In order to determine whether RAPD profiling could be used to characterize
genetic variation among lliamna populations, 42 different primers were used to screen
four random lliamna samples. Eighty-five per cent (36) of these revealed polymor-
phisms. Seven primers used for the analysis were selected based on the following
criteria. The primers had to: (1) reveal polymorphisms, (2) consistently produce
strong (brightly staining) amplification products, (3) produce uniform, reproducible
markers between replicate PCRs, (4) be insensitive to DNA template concentrations
varying from | ng/puL to 100 ng/pL (McClelland & Welsh, 1994). Furthermore, we
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Variance Significance
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|.corei .remota ' among species
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[\ 30.5% p<0.002
within species/
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among populations

4 " 9 3 7
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454%  p<0.002
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Figure 2. The nested experimental design for the analysis of molecular variance (AMOVA). The results
of partitioning of variance by the AMOVA are shown. Molecular variances within populations and

within species/among populations are significant (P < 0.002). The molecular variance between species is
not significant P = 0.27). See Table 3 for population abbreviations.

only scored reproducible fragments (shared fragments between replicate RAPD
reactions) that were in the middle molecular weight range (see Penner et al., 1993;
Stewart & Porter, in press). Ninety-nine informative markers were generated for
analyses. A representative gel showing amplification products using one primer is
shown in Figure 3.

Statistical analyses

The nested AMOVA was used to test the null hypothesis that no genetic
subdivision exists among populations or among species. The global analysis showed
the molecular variation within and among the four populations tested was significant
(Psc = 0.43, Dgp = 0.51, P < 0.002), where g and Py are F-statistic analogues
(Excoffier et al., 1992). The very high ®g indicates extreme population subdivision
(Wright, 1978). This amount of population subdivision is very high compared to the

Peters Mountain Mallow Kankakee Mallow
MP 1G |

o B

11 22M34F2228CT 088

D4

Dida
D

2 4 6

I TM890123412456M86 Tno8

Figure 3. Typical RAPD gel (0.8% synergel/0.8% agarose compasite) stained with ethidium bromide
using primer OPA2. See Table 1 for sample abbreviations.
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TABLE 3. Pairwise ®gr between populations. pm = . corei mountain and garden population
mp = I remota mallow preserve population; ig = I. remota Iron Gate population; i = L remote
Interstate 64 population.

Populations pm mp ig i
pm 0

mp 0.37 0

ig 0.43 0.08 0

i 0.62 0.54 0.74 0

mean analogous Ggr values of other endemics (0.248), long-lived herbaceous
perennials (0.213), and animal-mediated outcrossers (0.197) (Hamrick & Godt,
1989). We located local differences by performing all possible pairwise comparisons
using the same procedure. The ®gy values between populations showed that the two
closest 1. remota populations (IG and MP) were not significantly different from one
another at the P = 0.05 level (®gr = 0.08) (Table 3). This suggests that the smaller
IG population possibly originated from the larger MP population at some date
following the initial dispersal of I remota to Virginia. In addition, ®gt between PM
and 1. remota populations (0.47) was about the same as the overall average ®gr (0.51)
but was less than that for population I and the other populations (0.63) (Table 3).

The HOMOVA tests whether all populations are equally variable (homogeneous
variances). The global HOMOVA analysis shows that variance heterogeneities
differed among populations (P < 0.002). We located local differences of variance by
performing all possible pairwise comparisons using the same procedure. Pairwise
comparisons at the 0.05 level revealed that the variance of PM (7.12) was not
different than MP (7.0) but was significantly greater than that of IG (4.4) and I (1.1).
The very low variance of I indicates that this population is nearly monomorphic and
is the product of the founding of very few individuals, or is simply one clone varying
by somatic mutation. Although there is appreciable genetic variation within both
species, it is striking that the variance of the presumably much older PM population
is not higher than the young large 1. remota population (MP). Hence, the lack of
genetic diversity may explain some of the rarity of I corei. However, the lack of
extensive RAPD variation of 1. remota populations may be explained by recent
founding events.

The UPGMA dendrogram depicts the genomic relatedness of individuals to each
other based on RAPD markers (Fig. 4). Discreet populations (PM, I) each form a
cluster, and IG and MP individuals intermingle within a single cluster. In addition,
the dendrogram provides a very good fit to the triangular euclidean distance matrix
(P < 0.001; r=0.93). Thus, the cluster analysis corroborates the AMOVA by
showing three discreet populations (PM, I, IG-MP) from the sample taken. At the
species level, 1. remota and 1. corei each form clusters, but the AMOVA indicates that
the genetic differences are not statistically significant.

DISCUSSION
RAPDs have proven to be useful markers in conservation genetics. They have

been shown to be roughly equivalent to conventional allozyme markers in measuring
genetic diversity (e.g. Liu & Furnier, 1993). That is, when polymorphisms are
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Figure 4. A single UPGMA tree constructed from 99 RAPD characters. Branch lengths indicate relative
RAPD similarity (euclidean squared distances are on axis). See Table 1 for sample abbreviations.

observed in both systems, the relative genetic variation among individuals and
populations is similar. Where low genetic divergence is evident, RAPDs reveal
polymorphisms when allozymes do not (Brauner, Crawford & Stuessy, 1992; also see
Stewart & Excoffier, 1996).

Although there have been great strides in developing molecular techniques in
population biology, the development of statistical analyses have lagged behind. In
most population-level studies, RAPD data have been treated in a qualitative fashion,
and/or been subjected to non-statistical analyses such as cluster analysis (e.g.
Castiglione et al., 1993; Hsiao & Rieseberg, 1994; Stewart & Porter, 1995). These
approaches are useful in delineating clonal structure and identities within
populations, and in determining phylogenetic relationships among taxa. In one
example, RAPDs were used successfully in clarifying the taxonomic relationships
among varieties of Ranunculus acriformis (Ranunculaceae) and allied species (Van
Buren et al., 1994). Based upon cladistic analysis and morphological variation, Van
Buren et al. (1994) elevated R. acriformis var. aestivalis to R. aestivalis. However, for
quantitative population-level analyses in which the investigators want information on
population genetic substructuring, they have had to use allozyme markers or other
codominant markers. In spite of the dominance problem with RAPDs (heterozygotes
are indistinguishable from homozygous positives on a gel), some researchers have
attempted to use algorithms to describe population structure with RAPDs. For
example, Dawson et al. (1993) examined highly inbred Hordeum spontaneum (Poaceae)
populations and assumed high marker homozygosity. They used orthodox statistical
approaches based on genotype frequency. However, this assumption is generally not
appropriate. Russell ez al. (1993) used the Shannon diversity index to partition RAPD
variability to within and among population components. Although this provides an
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estimate for population structure, one cannot test for significant differences. In order
to use RAPDs in a quantitative fashion one must correct for dominance. Clark &
Lanigan (1993) have presented a method of estimating nucleotide divergence with
RAPD:s. The primary assumption for their analysis is that populations are in Hardy-
Weinberg equilibrium. This is often not a valid assumption, especially in small
endangered populations. Gibbs, Prior & Weatherhead (1994) used this approach in
examining populations of snakes. Lynch & Milligan (1994) and Stewart & Excofher
(1996) have recently presented methods to analyse RAPD data in quantitative
population-level analyses that require no underlying assumptions of genotype
distribution. In the latter treatment, methodologies were presented to allow the
estimation of allele frequencies on phenotypic RAPD data using non-parametric
statistical procedures.

The method presented by Stewart & Excoffier (1996) (AMOVA) was used here to
partition the molecular variance into three levels (between species, among
populations/within species, and within populations) based on a priori taxonomic and
geographic criteria and tested whether the null hypothesis should be rejected at the
three levels. The null hypothesis, that groups of plants are panmictic, can be rejected
if molecular characters among groups are significantly different. The null hypothesis
was rejected in the among population and within population levels only. However,
the null hypothesis was not rejected at the species level (P = 0.27). Therefore, these
results offer no evidence in favor of the I corei and I remota split (Sherff, 1949) into
separate species. Furthermore, the genetic divergence between I coret and the I
remota populations is about the same as for all populations, but less than the
differentiation between I and the remaining populations (Table 3). So that PM has
more similarity at the DNA level to I remota on average than does population I the
other I remota populations.

The UPGMA dendrogram, which has very similar topology to the tree presented
in Stewart & Porter (1995), is consistent with the results of the AMOVA with regards
to population structure (Fig. 4). However, the AMOVA indicates that the separation
of 1. corei and 1. remota in the cluster analysis is not significant. These analyses indicate
that I coret should perhaps be recognized as a subspecies of I remota. But the
taxonomic relationship between the two remains enigmatic. Further study encom-
passing the other species of lliamna is needed in order to assess the variation
throughout the genus, and to properly classify the endangered 1. corei. To this end we
will continue to pursue molecular work including sequencing of the ITS rDNA of all
species of Iliamna and performing cladistic analyses to further investigate phyloge-
netic relationships within the genus. Furthermore, we are seeking to elucidate the
molecular basis of I corer’s ecological demise on Peters Mountain.
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