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Review
Glossary

Data mining: the computational process to search for consistent patterns or

systemic relationships among the variables in a complex dataset. It includes

several popular techniques, such as neural network, decision tree and logistic

regression.

Data modeling: the computational approach to determine relationships among

concepts or objects. In systems biology, data modeling is used to elucidate

relationships among system elements based on the biological information.

Data visualization: techniques to describe relationships among the elements

with graphics, images or animations.

Dynamic network: this network integrates interactive and kinetic changes of a

system. The network is often built up through the reiterative modeling and

validation processes. It can be used to predict the outcome of a stimulus in the

network.

Meta-analysis: statistical approaches to integrate data from multiple studies to

derive related hypotheses, combining multiple analyses for a grand analysis. In

practice, meta-analysis can be used to establish common relationships among

components based on different types of data and among various empirical

studies that might not be directly comparable with one another.

Multivariate analysis: statistical approaches used to analyze more than one

variable at a time. In practice, these methods are used to reduce the dimension

of the data in a complex dataset with multiple variables.

Network: the interaction and integration of multiple components in organisms

using computational models and visualized by node and connection diagrams.

Static network: in contrast to a dynamic network, a static network is
‘Omics’ research approaches have produced copious
data for living systems, which have necessitated the
development of systems biology to integrate multidi-
mensional biological information into networks and
models. Applications of systems biology to plant science
have been rapid, and have increased our knowledge
about circadian rhythms, multigenic traits, stress
responses and plant defenses, and have advanced the
virtual plant project.

Biological systems and systems biology in plants
The practice of integrating physiological, morphological,
molecular, biochemical and genetic information has long
been applied to biological research, and in diverse fields
such as plant breeding and ecology [1]. The development of
modern systems biology was driven by the need to assim-
ilate the large amounts of data generated by genome-scale
studies into biologically meaningful interpretations.
Nevertheless, the definition of systems biology is still
contentious; some researchers emphasize the role of
dynamic modeling, whereas others stress multidimen-
sional data analysis. Considering the infancy of the field,
this dichotomy is not surprising [2]. Here, we define sys-
tems biology as the study of interactions among biological
components using models and/or networks to integrate
genes, metabolites, proteins, regulatory elements and ot-
her biological components. We focus mainly on networks.
Both component integration and dynamic interactions are
key features of systems biology. There is an immediate
need for systems integration in plant biology, considering
the large datasets generated from different omics technol-
ogies such as genomics, proteomics, transcriptomics, inter-
actomics and metabolomics (Box 1). Contrasting with the
immense recent efforts of generating large datasets, there
has been less development of platforms to integrate multi-
dimensional data to derive models for describing biological
interactions in plants [1–3]. Some prominent reviews have
been published regarding one or two aspects of plant
systems biology or its history [1,3–5]. Other reviews have
discussed the techniques used in systems biology, such as
microarray, next-generation sequencing, synthetic genetic
array, pull-down assays, the yeast two-hybrid system,
systems biology markup language and other important
tools [6–9]. However, most of the previous plant systems
biology reviews focused on the application of systems
biology in one area of plant biology [5,10–20], and a
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wide-ranging review covering different types of networks
and broad application perspectives is still not available.
We therefore aim to provide a comprehensive review on
recent advances in the integration of multidimensional
data into networks and the application of these networks
in addressing questions in plant biology.

Advances in plant systems biology – a network
perspective
Network (see Glossary) construction and analysis is one of
the most common approaches to describe biological sys-
tems. Networks can be either static or dynamic, and their
components can include genes, proteins, cis-elements,
metabolites and other molecules. Here, we focus on four
network types, including gene-to-metabolite networks,
protein–protein interaction networks, transcriptional
regulatory networks and gene regulatory networks
(Figure 1). The first three types of networks are often
static, whereas the gene regulatory network frequently
emphasizes the dynamic changes of processes.

Gene-to-metabolite networks

Gene-to-metabolite networks define the interactions
among genes and metabolites and are typically
constructed using multivariate analysis or data mining
constructed without kinetic information. It is used more often to describe the

associations among system components.
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Box 1. Systems biology and omics

Systems biology is related but not synonymous to the postge-

nomics omics technologies such as microarrays for high-through-

put generation of large-scale data. Genome sequencing enables

functional or comparative studies of plant genomes [48]. Genome

information also leads to the study of the mRNA transcripts and

proteins of an organism as a whole, which are referred to as

transcriptomics and proteomics, respectively [7]. Research of all or

most of the metabolites in an organism is referred to as

metabolomics [81]. The study of genome-scale interactions among

proteins is referred to as interactomics [46]. The advances in RNA

interference and other mutagenesis technologies have enabled

high-throughput phenotype screens for genes; this is referred to as

phenomics [15]. With the recent advances in analytical techniques,

the list of omics is growing to include, for example, glycomics,

fluxomics and ionomics [82–84].

Regardless of which omics techniques are used to generate data,

the goal for systems biology is to define the structure, dynamics and

control of biological systems. Thus, systems biology extends

beyond the omics list of genes or proteins to the functional whole

plant, which requires bioinformatics to model suites of biological

data into networks, which are representations of the actual plant.

Bioinformatics, then, is the key for successful integration and

presentation of systems biology data. Considering the complexity

and diversity of biological systems, the computational models for

different applications are expected to be diverse.

Figure 1. Networks in plant systems biology. The four common networks used in

plant systems biology study are shown. (a) The gene-to-metabolite network often

derives from correlation analysis of gene and metabolite profiling under multiple

conditions. In the network, genes are typically symbolized differently to

metabolites. Here, genes are represented by circles and the metabolites by

squares. The interactions are symbolized with lines. (b) Interactomes can be

derived from genetic or protein-binding assays such as yeast two-hybrid assay and

co-immunoprecipitation. These can be visualized with circles representing genes

or proteins and lines representing interactions. The genes in centralized hub

locations with many interactions among multiple genes are often symbolized with

a different color. (c) The transcriptional regulatory network is highly diverse and

can be presented as a hierarchical structure. The elements at the top are expected

to be general regulatory genes. (d) The gene regulatory network can be derived

from gene expression profiles, mutant analysis and other data. The gene

regulatory network is dynamic, and system dynamics need to be visualized in

the graph by the different symbols of the lines. The genes are often represented by

circles and the interactions between genes are often represented by lines. Different

symbols at the end of the lines can describe different types of interactions,

including gene activation and repression.

Review Trends in Plant Science Vol.13 No.4
of gene profiling and metabolite profiling data under
different conditions (Figure 1a). The outputs from statisti-
cal analyses are often visualized based on the distance
calculated among genes and metabolites according to their
profiling patterns. If a gene is determined as being ‘close’ to
a metabolite, it might be implicated in the biosynthesis or
regulation of the latter. The study of gene-to-metabolite
networks is more complex in plants, particularly in com-
parison with mammals, because of the greater diversity
and larger numbers of metabolites produced by plants as
an adaptation to their sessile life style.

Early research used gene-to-metabolite networks to
dissect the dynamic responses during sulfur and nitrogen
starvation in Arabidopsis [21]. The work integrated micro-
array-based gene profiling with liquid chromatography
mass spectrometry (MS) and Fourier transform–ion cyclo-
tron MS-based metabolite profiling using multivariate
analysis methods including self-organizing map and prin-
cipal components analysis to derive gene-to-metabolite
associations [21,22]. In a follow-up study, analyses of
gene-to-metabolite networks led to identification of several
previously unknown desulfoglucosinolate sulfotrans-
ferases and candidate transcriptional factors regulating
anthocyanin biosynthesis [23]. By combining systems
biology with reductionism, coordinated changes of genes
and metabolites following alteration of expression of key
signal transduction pathway genes have been elucidated
[24,25]. Recently, gene-to-metabolite networks have been
characterized for stress responses, plant defense and hor-
mone-induced responses [26–28]. Moreover, the gene-to-
metabolite networks have also been constructed for plant
species with limited available genome information, such as
Madagascar periwinkle (Catharanthus roseus) [29]; the
network analysis in this case led to the discovery of novel
candidate genes for terpenoid indole alkaloid biosynthesis.

In silico analysis of previously published gene expres-
sion datasets can be used to construct metabolite- or
166
gene-to-metabolite networks. This type of analysis is based
on the assumption that genes within the same metabolic
pathway are frequently coregulated. Suchmeta-analysis of
microarray data identifies coregulated genes with higher
correlation efficiency, and these groups of coregulated
genes can then be associated with particular metabolic
pathways. This approach has recently been used to identify
the genes involved in metabolite biosynthesis and tran-
scriptional regulation of 140 different pathways [30].

Another approach to integrate gene expression data
with metabolism was to present the expression data in
the context of metabolic pathways using MapMan, soft-
ware enabling statistical treatment of multiple microarray
datasets to display the significantly changed genes in the
corresponding metabolic pathway [31]. This approach was
successfully applied to identify the genes and metabolic
pathways involved in the response to nitrogen deficiency
and during diurnal cycles [32,33]. Notably, the integration
of gene expression data with sugar-related pathways in
both wild-type Arabidopsis and a starchless phosphoglu-
comutase (pgm) mutant enabled the dissection of the
intervening sugar and circadian rhythm signaling and
the identification of sugar-responsive genes during the
diurnal cycle [32,34].

Over the past four years, different types of gene-to-
metabolite networks have added new perspectives and
insights in plant science. First, the gene-to-metabolite
network clarified how biological processes are interrelated,
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enabling substantial improvements in omics data
interpretation, better prediction of outcomes for system
perturbations and conceptual reconstruction of interactive
biological systems with multiple components, including
enzyme activities, gene expression and metabolite levels
[35]. Second, the systemic view enables the discovery of key
regulatory components in a biological system and thus
improves gene function annotation [24]. Third, the associ-
ation of genes with metabolites enables the discovery of
new genes involved in metabolite biosynthesis, transport,
regulation and modification, in addition to their regulation
[23]. Despite progress, the application of the gene-to-
metabolite network approach has been hampered by tech-
nological and computational limitations. The structure of
many plant metabolites cannot be readily resolved by MS-
based methods [36]. The gene expression analyses using
microarray or serial analysis of gene expression often
require extensive genome information of the plant species
studied [7]. In addition, linear correlation has been used to
establish most of the gene-to-metabolite network, which
cannot reflect the dynamics of the system. Technological
challenges can be met using improved MS and nuclear
magnetic resonance-based metabolite identification, in
addition to the application of next-generation sequencing
in transcriptome profiling [3,6]. More precise gene-to-
metabolite network construction will be possible with
the rapid progress in both technology and algorithm de-
velopment.

Plant interactome and protein interaction networks

Two types of interactome (Box 1) have recently been recog-
nized: genetic and physical (Figure 1b). A genetic inter-
actome is a network of genes characterized on the basis of
genetic interactions serving to elucidate gene function
within physiological processes [9]. A good example of this
approach is systematic genetic analysis (SGA) for yeast
[37]. One characteristic feature of the yeast genetic inter-
actome is that genes having important cellular functions
typically form interaction hubs, at the center of multiple
interactions with many other genes [38]. The SGA-based
genetic interactome has also been applied successfully in
the nematode (Caenorhabditis elegans) [39]. Despite its
potential, the application of SGA to plants is often com-
plicated by polyploidy and a comparatively long life cycle of
plants that decreases precision and increases the time
needed for genetic manipulation. These factors confound
the emergence of phenotypes because of redundancy and
noisy data. Nonetheless, similar approaches of multiple
mutations have been adopted to identify the two-com-
ponent interaction network for Arabidopsis type-A
response regulators involved in cytokinin signaling
[40,41]. Even though the establishment of a genome-wide
genetic interactome map currently might be difficult, the
local genetic interaction network of proteins can provide a
better understanding of gene functions and their inter-
actions. Besides the SGA interactome, an RNA interfer-
ence-based method of downregulating target genes can
also help to create genetic interactome maps, considering
the relatively facile transformation of Arabidopsis [40,41].

As compared with genetic interactions, physical inter-
actions among proteins are relatively easier to characterize
in plants. Two main techniques are the yeast two-hybrid
system, and anti-tag immunoprecipitation coupled with
tandem MS characterization [42]. Genome-wide studies
of the physical interactome have reached a particularly
advanced stage in biological systems of lesser complexity
than plants [43,44]. Comprehensive physical interactomes
based on the yeast two-hybrid system have been described
for yeast, Drosophila, and C. elegans [45,46]. MS methods
have also resulted in genome-scale descriptions of the
yeast interactome [47]. To date, neither technique has
been used for similar interactome research in plants but
initial steps toward this goal are being taken, such as the
identification and archiving of recombinant clones com-
prising full-length cDNAs for the model species Arabidop-
sis [48].

Published physical interactome work in plants has
involved either large-scale in silico methods or gene
family-level protein–protein interaction network studies.
The in silico approach maps are called ‘interologs’ (inter-
acting othologs). Interologs are the predicted interactive
protein pairs, and they are identified by the sequence
similarities to the proteins that are known to interact in
the reference species such as yeast and human [49]. The in
silico predicted interactome based on the interologs in
Arabidopsis was developed as a potential guide map for
a genome-level interactome in plants [50,51].

Despite the absence of an experimentally established
global interactome for any plant species, studies focusing
on local protein–protein interaction networks have been
particularly productive. An interaction network based on
the yeast two-hybrid system for essentially all Arabidopsis
MADS box domain DNA-binding proteins revealed both
specific heterodimeric and homodimeric interactions [52].
In a similar study, the interactions betweenmyeloblastosis
(MYB) protein and R/B-like basic-helix–loop-helix (BHLH)
were characterized, which helped to distinguish the func-
tions of different MYB proteins with similar sequences
[53]. The research helped to characterize the functions of
MYB DNA-binding proteins and BHLH transcriptional
factors, both of which are involved in a variety of processes,
including cell cycle, cell proliferation and cell lineage
establishment [53]. Recently, a comprehensive study has
helped to identify a protein–protein interaction network of
over 70 proteins in wheat for abiotic stress response and
development [54]. Besides the yeast two-hybrid system
and anti-tag co-immunoprecipitation, protein microarrays
were also used to probe the interaction between proteins
globally in Arabidopsis [55].

Overall, local- and gene family-based interaction net-
works have shown much potential for a plant interactome
to provide a global view of changes in biological processes,
identify the key regulatory proteins and offer in-depth
understanding of signal transduction. The potential of
interactomes in understanding the systemic regulation
of biological processes is unquestionable; however, the
techniques currently used to build the interactome, especi-
ally the physical interactome, often identify false-positive
interactions. Therefore, biochemical methods such as the
fluorescence resonance energy transfer (FRET) assay are
used to validate the interactomic methods [56]. However,
both the FRET assay and the yeast two-hybrid system are
167
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in vitro methods, and only co-immunoprecipitation can be
performed in vivo, enabling protein–protein interactions to
be characterized directly in plants of interest. Because
each platform has limitations, using two or more platforms
should yield more reliable interactome models compared
with any single platform.

Transcriptional regulatory networks

Whereas the interactome describes protein–protein inter-
actions, the transcription regulatory network describes the
interaction between transcriptional regulatory genes and
downstream genes, as shown in Figure 1c [17,57]. The
transcriptional regulatory network was one of the first
types to be constructed in molecular and cellular biology
[17]. The data are often based on interactions between
regulatory genes and downstream genes, as defined by
mutant studies, global gene expression profiling, compu-
tational prediction of cis-elements and protein–DNA inter-
action studies using gel-shift assays. Examples of such
networks, which also can incorporate information from
the existing literature, have been constructed to infer
signaling events involved in plant development, defense
and physiological changes [58–60]. Recently, several com-
putational tools and databases have been developed to
identify the interaction between transcription factors
and cis-elements, an important component in the construc-
tion of transcriptional regulatory networks [25,61,62].

This approach has recently been used to study tran-
scription factors involved in glucosinolate biosynthesis
[25]. Glucosinolate biosynthesis genes were first identified
through meta-analysis of more than 1000 microarray
experiments in public databases by building a gene-to-gene
interaction network [25]. The mutants for candidate myb
genes were then analyzed by DNAmicroarray experiments
to identify the downstream genes controlled by the myb
genes. A transcriptional regulatory network for glucosino-
late biosynthesis genes was made from gene profiling data,
mutant analysis and previous publications [25]. Myb28,
Myb29 and Myb34 were identified to be the upstream
transcription factors regulating glucosinolate biosyn-
thesis, and all three genes were found to be downregulated
in response to sulfur deficiency, indicating that plants
mounted an effort to relocate the limited sulfur resources
to produce sulfur-containing amino acids and glutathione
biosynthesis [25]. The research highlights the potential of
using transcriptional networks to describe systems-level
regulation of a biological process in addition to discovering
key transcription factors [25].

Gene regulatory networks

A gene regulatory network describes how genes interact
with one another during the biological process to perform a
function [16,20]. The relationships among the genes in the
network can be defined in terms of activation, repression
and other types of functional interactions. This type of net-
work is more general than that described earlier because it
incorporates post-transcriptional events such as protein
targeting and covalent protein modification. For the pur-
poses of mathematical modeling, the relationship between
interacting genes is almost always simplified to activation
and repression. Gene regulatory networks are often derived
168
from a computational model based on previously published
gene expression and mutant study data, and the model is
subsequently validated and refined by perturbing the sys-
tem, either using gene knockouts or specific biotic or abiotic
treatments [16,20]. Network visualizations typically
represent genes as ‘nodes’, and their relationships, simpli-
fied to activation or repression, as lines, as shown in
Figure 1d.

One important benefit of the gene regulatory network is
its capacity to describe the dynamics of a biological system.
Discrete or continuous models are often employed to
represent the changes during a process or a period of time.
Unlike the other networks, which are static, gene regulat-
ory network models are often dynamic [63].

Gene regulatory networks have been constructed to
study several different developmental and physiological
processes in plants [20,63–66]. For example, a discrete
dynamic model has been developed that integrates pre-
viously published gene expression and genetic data during
flower development in Arabidopsis [64]. The results
implied that cell fate in flower development is not con-
trolled by a precise signaling pathway, but rather by the
dynamics of the gene network, reflected by a balance of
effects provided by different genes [64]. In another
example, gene regulation network analysis was also used
to model the essential components controlling guard cell
size [63]. In this study, the network organization data
were first extracted from previous publications to con-
struct the network structure. The probability of guard cell
closure could be predicted through a dynamic model with
Boolean (logic) functions when the network system is
disturbed using external stimulations such as abscisic
acid treatments. The final model provided a comprehen-
sive overview of genes interactively involved in controlling
stomata, and was validated by accurate prediction of the
probability of guard cell closure when the network system
was disturbed by external stimulation [63]. Largely, a
gene regulatory network represents a viable approach
to explain gene function in biological processes in a
dynamic fashion.

Overall, biological network construction has been the
most popular approach in systems biology to describe the
physiology of an organism or a biological process. The
advantages of networks lie in their capacity to understand
the inherent biological complexity by identifying key com-
ponents and interactions for system regulation. However,
it is important to recognize that a network often has
assumptions for data modeling, and thus cannot represent
the exact biological system, no matter how perfectly it was
built up. Despite the limitations, networks have provided
new perspectives for interpreting omics data and have
been applied to study a variety of plant biological ques-
tions.

Advances in plant systems biology – a biological
perspective
There are several practical problems plaguing agriculture
that are being addressed using systems biology. Examples
of areas in plant science that have been addressed using
systems biology are quantitative traits and plant stress
and defense.
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Systemic responses to abiotic stress

All four types of networks have been used to study plant
responses to abiotic stress. The gene-to-metabolite net-
work has been used to study Arabidopsis thaliana
responses to nutritional deficiency [21,22]. A protein–
protein interaction network was used to identify the key
groups of genes involved in abiotic stress responses and
flowering control in wheat [54]. A transcriptional regulat-
ory network was built to elucidate the molecular mechan-
isms of dehydration and cold stress responses in
Arabidopsis [58]. A gene regulatory network was success-
fully applied to explain the dynamics of aperture opening
and closure in Arabidopsis in response to environmental
stimuli [63]. In addition, a combined study of transcrip-
tomics, quantitative trait loci (QTLs), mutant studies and
yeast two-hybrid assays has helped to characterize genes
involved in stress response and seed germination in rice
[54,67]. Using systems biology platforms, plant stress
response networks and dynamics were generated, which
enabled the discovery of several important plant stress
response genes [67]. These examples illustrate the power of
using different types of networks to understand complex
responses to stress, especially indicating how stresses
induce the same and related genes.

Defining defense systems

Relatively few reports have been published about systemic
modeling of network dynamics involved in plant defense.
The capacity of systems biology for dissecting plant defense
responses was manifested by a recent study that defined
the ‘regulatory node’ in the transcriptional regulatory net-
work controlling systemic acquired resistance (SAR) [60].
SAR is a mechanism that plants use to defend themselves
from disease by mounting a systemic response after an
initial pathogen infection. The research combined mutant
studies and global gene expression profiling to identify
several key WRKY genes as the regulatory node down-
stream of the nonexpresser of pathogen responsiveness
gene 1 (NPR1), the key salicylic acid pathway regulator
during SAR [60]. The research helped to define the roles of
different WRKY genes in SAR, including establishing
WRKY18 as a crucial positive regulator [60]. Systems
biology should be valuable for gaining a better understand-
ing of plant defense, which often involves coordinative
changes in secondary metabolite abundance and gene
expression [19,25,27]. In particular, we expect that gene-
to-metabolite networks will enable a better understanding
of secondary metabolite synthesis, transport, dynamics
and regulation during the defense process.

Modeling multigenic traits

The need to use systems biology to model multigenic traits
is obvious and has been reviewed and discussed previously
[68,69]. QTLs can be modeled using phenotypes under
different environmental conditions to derive genotype-to-
environmental interactions, in which one or more portions
of the genome is associated with a phenotype [70–72]. The
modeling of QTLs using the systems biology approach has
helped to predict multigenic traits such as leaf growth and
nitrogen accumulation in maize grain [73]. This approach
is not as facile when gene, protein and metabolite
information is limited. Comprehensive models using
QTL, gene, protein, metabolite and phenotype information
integrated will enable more-efficient breeding programs to
improve traits in crop species such as maize, soybean and
tomato. The so-called expression QTL and metabolite QTL
can be used to integrate QTL information with gene
expression and metabolite profiling, respectively, and they
have already been used for tomato improvement [74] and
the exploration of the genetic basis for metabolite diversity
across different Arabidopsis lines [74,75]. Multigenic trait
dissection might be the ultimate practical use of systems
biology in crop science. Systems biology is ideally suited to
detangle complex interactions that are defined by multi-
genic traits.

Data integration and the virtual plant project

Beyond all these applications, a more ambitious ‘virtual
plant project’ (http://www.virtualplant.org) aims to use
systems biology ultimately to generate dynamic models
of the plant itself to describe the biological processes at
molecular, cellular, physiological, organismal and ecologi-
cal levels [76]. Arabidopsis has become the default choice
for the virtual plant effort, from which an influx of data
from genome, transcriptome, proteome, metabolome,
interactome and phenome (Box 1) levels will be integrated
and modeled to build a multi-network [76]. Towards that
end, a virtual peach fruit model was built to identify the
optimal conditions for fruit maturation, andmany environ-
mental factors and plant features, including metabolite
information, were integrated in the model, which led to a
reasonable prediction of fruit quality [77]. The integration
of the virtual fruit model with transcriptome and metabo-
lome information is expected to accelerate breeding for
tomato fruit improvement [28].

The promises and challenges of plant systems
biology
There are three domains that must be addressed to take
full advantage of plant systems biology: (i) omics technol-
ogy development; (ii) data integration into usable formats
and (iii) data analysis within the domain of bioinformatics.
Among these, bioinformatics probably needs the most
attention because it is essential that biological data be
normalized, standardized and visualized to build inte-
gratedmodels [78–80] (Figure 2). The limitation of systems
biology is greatly tied to data modeling, in which analysis
always involves generalization, simplification and assump-
tions. Therefore, networks in systems biology might never
completely represent the actual biological system. The
interpretation of systems biology data needs to be ever
cautious and systems biology approaches can be comple-
mented by reductionist approaches. Nevertheless, plant
systems biology has come of age, given its potential to
provide crucial understanding of the regulatory networks
controlling developmental, physiological and pathological
processes in plants. Advances in plant systems biology are
needed to take full advantage of the ever-increasing num-
bers of omics technologies. Advances are needed for both
basic plant biology and also the discovery of the key
regulatory genes for agricultural purposes. We currently
ask crops to serve more purposes than ever before and we
169
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Figure 2. Bioinformatics applications in systems biology. (a) The normalization and scaling of the multidimensional omics data. Data from the different omics technologies

are expected to have diverse formats and numerical scales of data, and thus should be considered to be multidimensional – that is, beyond two or three dimensions that can

be simply visualized. To perform informative analyses, the multidimensional data from different omics techniques should first be integrated and normalized. (b) Data

modeling for normalized data. (c) Constructing interactions or dynamics based on the data modeling. (d). Data visualization. From steps (b) to (d), the normalized data are

modeled to estimate the level of interaction and association, and are then visualized. All steps might not be necessary for a given systems biology study. In (a), the different

shapes indicate the different types of biological data; in panels (a), (b) and (c), the different-colored circles symbolize the variables representing the data; and (d), the circles

represent the elements in the model. Lines represent relationships among the elements.
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also expect rapid genetic improvement. By understanding
systems integration, we should be able to accelerate crop
adaptation for food, feed, biofuels, and industrial and
pharmaceutical production.
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