
1 Introduction

Real-time PCR is a powerful, economical, rapid,
and high-throughput technique for assaying gene
expression with broad applications in clinical stud-
ies, diagnostics, forensics, food technology, patho-
gen detection, and functional genomics [1–4]. The
technique has been adopted quite widely because

of the apparent advantages over other gene ex-
pression methodologies such as Northern blot
analysis: a much larger dynamic range, higher sen-
sitivity, smaller sample amount requirements, and
less labor. Even though real-time PCR has become
one of the most important enabling technologies in
the genomic era, the real or perceived unreliability
of real-time PCR data has engendered serious con-
cerns [1, 4]. Both proper experimental design and
reliable statistical analysis are the bases for the ac-
curacy and reproducibility of results. Furthermore,
without these, data interpretation and conclusions
could be faulty. Proper experimental design in-
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volves the inclusion of suitable internal and exter-
nal controls, sufficient replication, and appropriate
and efficient cDNA synthesis methods [4, 5]. The
optimal statistical treatment for real-time RT-PCR
requires precise data modeling, integration of am-
plification efficiency (AE), and rational outlier ex-
clusions. While real-time PCR experiments can be
performed for both absolute and relative quantifi-
cation, the focus of this paper will be on the relative
quantification, which is the more prevalent appli-
cation in biology [4].

Previous publications laid down the founda-
tions for mathematical methods for real-time PCR
data analysis [6, 7].The standard curve method and
ΔΔCt method are described in these articles. Both
methods involve calculation based on Ct, the cycle
number at which logarithm-transformed fluores-
cence crosses a threshold. The standard curve
method calculates the AE and expression ratio
based on Ct numbers from a serial dilution of tem-
plates [6].The ΔΔCt method assumes the percentile
amplification efficiency (PAE) is 100% (doubling of
PCR products per cycle) and calculates the ratio
based on 2–ΔΔCt [7]. Even though these papers have
been significant contributions for analysis of real-
time PCR data, robust statistical treatments are
largely lacking, especially in terms of confidence
interval estimation and P value [8]. Statistical treat-
ments are crucial to obtain meaningful and accu-
rate interpretation of real-time PCR data, since
large variation may be observed with different
mathematical methods without appropriate statis-
tical analysis [9].A recent influx of publications for
statistical modeling of real-time PCR data is reflec-
tive of bioinformaticians’ desire to address these
issues. However, the problem is still acute for
“messy” data sets.

Statistical analysis of real-time PCR data in-
volves data modeling for ΔΔCt calculation, AE cal-
culation, quality control, and outlier exclusion.
Most statistical modeling methods include data
quality control functions based on linear regres-
sion models [8]. KOD and Grubbs’ test have been
proposed to be outlier exclusion methods and can
be integrated for data analysis [9]. Statistical meth-
ods have been developed to derive ΔΔCt based on
pair-wise tests, ANOVA, and GEE models [10]. In
2006, Yuan et al. proposed fitting real-time PCR
data into ANCOVA and multiple regression models
for ΔΔCt calculation, data quality control, and an
equal AE test. Here, the regression models are es-
pecially powerful tools for real-time PCR data
analysis. However, the current models often in-
clude inappropriate assumptions in relation to AE,
which limits the models application to appropriate
data sets. Some models assume that all PCR reac-

tions should have PAE of 100%, and others assume
the equal PCR amplification efficiencies among
samples or genes [7, 8]. Either assumption is some-
times violated in actual experiments, since amplifi-
cation efficiencies in real-time PCR experiments
can typically vary between 70 and 100%.When data
from lower AE or unequal amplification efficien-
cies are analyzed with the current available mod-
els, the inferred result could be much different
from actual gene expression, which is a major
source of unreliability of real-time PCR technolo-
gy.

AE is probably the most important concept in
real-time PCR quantification, since the develop-
ment of the technique is based on the assumption
that PCR products double each cycle, but it can be
a confusing issue to practitioners. When the per-
centile PCR AE is not 100%, the quantification must
be adjusted by the AE. PCR AE has been presented
as variably from 1 to 2, or 0 to 1 (0–100%) [11, 12]. In
order to avoid the confusion, we use AE to repre-
sent the multiplication of PCR product increase
during each cycle, which is between 1 and 2, and
PAE to represent the percentage of full AE capaci-
ty, which is between 0 and 1 or 0 and 100%. The
mathematical conversion between AE and PAE has
been controversial as well. Some researchers de-
fine AE as 1 added to PAE as shown in Eq. (1) [11],
while others define AE as 2 powered by PAE as
shown in Eq. (2) [4]. In this article, we adopted the
second definition to have AE equal to 2 powered by
PAE as shown by Eq. (2), because of the advantages
in statistical modeling and estimation. AE and PAE
are normally calculated through standard curve for
Ct or fluorescent signal strength during the ampli-
fication [8, 11]. The concept and calculation of AE
and PAE will be discussed in detail in the article
since they are important in calculating AE adjusted
ΔΔCt and relative gene expression abundance.
Even though several papers have been published
in calculating AE, few have thoroughly discussed a
precise universal statistical model with AE inte-
grated in ΔΔCt and ratio calculation. Proper AE-in-
tegrated statistical models for ratio calculation and
significance estimation are therefore the key issue
for accurate real-time PCR quantification nowa-
days.

AE = 1+PAE (1)

AE = 2PAE (2)

where AE is the amplification efficiency (1–2) and
PAE is the percentile amplification efficiency (0–1).

Besides the efficiency adjustment, recent ad-
vances of real-time PCR quality control involving
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multiple controls require a proper statistical mod-
el for ΔΔCt calculation integrating more than one
control [13, 14]. A weighted ΔΔCt method is also
presented, and integrating efficiency adjusted ΔΔCt
should provide optimal accuracy.

Overall, in this article, we present efficiency
adjusted and weighted ΔΔCt methods for gene ex-
pression analysis with real-time PCR as well as
the statistical models implementing the method.
Several linear model based methods and SAS
programs will provide new approaches for effi-
ciency-integrated real-time PCR data analysis.
The concept of ΔΔCtadjusted and an efficiency-ad-
justed quantification method are first introduced.
The definition of AE and its calculation based on
simple linear regression models are discussed.
Statistical models are then developed for efficien-
cy adjusted ΔΔCt calculation for single concentra-
tion design, standard curve design, and a mixed
design. The weighted ΔΔCt models are included
for experiments with more than one internal con-
trol. Two-way ANOVA and multiple regression
combined with an unbalanced linear combination
are the main statistical approaches employed.
SAS programs are developed for each model and
a test sample set is analyzed with different statis-
tical methods. Comparison of efficiency adjusted
quantification approach with previous models
has indicated that analysis of low-quality real-
time PCR data may miscalculate the target gene
expression ratio if AE effects are not explicitly
considered. Moreover, it highlights the impor-
tance of proper experimental design and condi-
tion optimization for real-time PCR.The pros and
cons for each proposed models and designs are
also discussed. The new methodology also pro-
vides a more precise and high-throughput alter-
native for statistical analysis of low quality real-
time PCR data.

2 Materials and methods

2.1 Real-time PCR experiments

Arabidopsis thaliana (Col1) plant growth, RNA ex-
traction, and real-time PCR experiments were car-
ried out as described [15]. The real-time PCR ex-
periments were conducted using a standard proto-
col recommended by the manufacturer. Basically,
approximately one microgram of total RNA was
synthesized into cDNA using iScript cDNA synthe-
sis kit (BioRad Laboratories). The cDNA was then
diluted into one to four and one to sixteen serial di-
lutions. Real-time PCR experiments were carried
out with duplication for each concentration with an

ABI 7000 Sequence Detection System (Applied
Biosystems). After the experiment, the Ct number
was extracted for both reference gene and target
gene with auto baseline and manual threshold of
0.4613. In addition to the Ct number, the fluores-
cence measurements were also downloaded. Be-
sides the dataset with one internal control, we in-
cluded a dataset with two internal controls (ubiqui-
tin and tubulin) to illustrate weighted ΔΔCt estima-
tion.

2.2 ΔΔCtadjusted and efficiency adjusted quantification
method

As discussed in Section 1, we adopted the PAE def-
inition in Eq. (2). According to the equation, PCR
product amount during the reaction can be defined
by Eq. (3), where PCR product equals AE raised to
the power of cycle number n and then multiplied by
original template amount. Since Ct is also a cycle
number by definition, it can replace the n in Eq. (3)
with Ct. From Eq. (3), we can derive Eq. (4).The goal
of real-time PCR quantification is to calculate the
absolute or relative abundance of original template
amount (P0) as shown in Eq. (4).

(3)

where P is the PCR product amount for a given
PCR cycle, P0 the original template amount, n is the
number of PCR cycles.

(4)

The purpose of relative quantification is to derive
the ratio of target gene expression between a treat-
ment sample and a control sample after normalized
by the internal reference gene. Equation (5) pro-
vides the universal solution for relative quantifica-
tion, where the P0 for each sample will be first nor-
malized against the internal reference gene and
then compared between the samples. Since Ct is
derived from the cycle number for a given thresh-
old, the PCR product amount (P) is equal among all
the samples and genes and therefore can be can-
celled out. The relative abundance of original tem-
plate for the target gene between samples can thus
be presented as follows in Eq. (5).

(5)

where Con is the abbreviation for control sample,
Tgt the abbreviation for target gene, Trt the abbre-
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viation for treatment sample, and Ref is the abbre-
viation for reference gene.

In the traditional 2–ΔΔCt method without efficien-
cy adjustment, the ratio can be calculated directly
from the Ct numbers as shown in the Eq. (6).

(6)

The differences between Eqs. (5) and (6) are that
the Cts in Eq. (5) have been adjusted by PAE. The
generalized efficiency adjusted ΔΔCt (ΔΔCtadjusted)
can therefore be defined as the differences for the
Ct numbers that are adjusted by PAE. From Eq. (5),
the ΔΔCtadjusted can be calculated and defined as in
Eq. (7). Equation (7) is the basis of statistical mod-
els in Sections 2.4 and 2.5 of the article

(7)

2.3 The estimation of PAE

A key component for the ΔΔCtadjusted calculation is
the PAE of PCR. We hereby present the linear re-
gression models for PAE estimation in both stan-
dard curve design and single concentration design.
The PAE can be estimated for a group of reactions
or a single reaction by simple linear regression
model. In 2006,Yuan et al. proposed a simple linear
regression model to calculate and perform quality
control on the PAE based on the standard curve de-
sign as shown in Eq. (8).The PAE can be defined as
–βlcon [8, 12, 16].

Ct = β0 + βlconXlcon + ε (8)

where Xlcon is the logarithm 2 based transformation
of serial diluted concentration.

Even though the Eq. (8) was developed for stan-
dard curve design, an alternative simple linear re-
gression model can be used for single concentra-
tion design by estimating PAE from fluorescence
measurements for each amplification cycle [11, 12].
Linear models for AE estimation has been dis-
cussed before, however, previous research either
models data with Eq. (1) or uses logarithm 10-
based transformation, both of which lead to no di-
rect estimation and test of PAE in the model.A bet-
ter way to calculate PAE in fluorescence can be de-
rived from logarithm 2-based transformation of Eq.
(3) as shown in Eq. (9).

Plog = P0log + n × PAE (9)

ΔΔCt Ct PAE
Ct

adjusted Tgt_Trt Tgt_Trt

Ref_Tr

= ×
−
(

tt Ref_Trt

Tgt_Con Tgt_Con

Ref_

PAE
Ct PAE
Ct

×
− ×
−

)
(

CCon Ref_ConPAE× )

Ratio Ct
Ct_Ref_Trt Ct_Tgt_Trt

Ct_Ref= =−2 2 2
2

ΔΔ /
__Con Ct_Tgt_Con/ 2

where Plog is the logarithm 2 transformed PCR
product amount (or fluorescence), P0log the loga-
rithm 2 transformed original template amount, and
n is the number of amplification cycle.

According to Eq. (9), a simple linear regression
model can be developed as shown in Eq. (10).

Plog = β0 + βxXc + ε (10)

where Plog is the logarithm 2 transformed PCR
product amount (or fluorescence reading) as
shown in fluorescence data, and Xc is the cycle
number n.

This model will be the basis for PAE calculation
for fluorescence data in the later part of the article.
The PAE can be directly estimated thorough testing
the βx. Based on this model, we can also perform the
data quality control for the PCR to test if PAE is
equal to 100%.When βx equals to 1, the PAE equals
to 100%.

The above simple linear regression models can
be readily implemented with SAS 9.1 (SAS Insti-
tute, Cary, NC) as shown in Supporting Information
File 1 and 2 for fluorescence data and standard
curve data, respectively. Supporting Information
File 3 is the input file for the single concentration
design fluorescence data, and Supporting Informa-
tion File 4 is the input file for Ct value from stan-
dard curve design. Both data formats are as shown
in Tables 1 and 2. For the fluorescence data analy-
sis, multiple filtering methods can be used to de-
termine the data point representing the exponen-
tial phase of PCR, which is not the focus of this pa-
per. In order to generate the dataset for down-
stream analysis, we filtered the input data by a
range based on the observation of amplification
curve.Typical real-time PCR data can be presented
as a plot of logarithm transformed fluorescence
against cycle number as shown in Fig. 1. A linear
range can be observed in the plot, in which the am-
plification curves for different samples are parallel
to one another.The linear range represents the log-
arithm phase of PCR and is used for AE calculation.
After the data filter, the fluorescence intensity rep-
resenting the PCR product amount is then subject-
ed to logarithm 2-based transformation. The loga-
rithm transformed fluoresce signal (PLOG) and cy-
cle number (CY) are then fitted for a simple linear
regression in Eq. (10). The slope represents the
PAE, and the test of slope = 1 will render the test of
PAE’s equivalence to 100%. In the same way, we can
analyze the standard curve data with Eq. (8) except
that the logarithm-transformed concentration
should be in reverse proportion to Ct.

Besides the model above, several other ways can
be used for point estimation and equivalence test of
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AE.Yuan et al. [8] proposed to use Type III sums of
squares of multiple regression model to test the
equivalence of AE. More generalized linear models
as shown in Figs. 2 and 3 can be used for estimation
of equivalence of PAE for different treatment and
samples with different design.

2.4 Statistical modeling of ΔΔCtadjusted for fluorescence data

The efficiency adjusted ΔΔCt in Eq. (7) can be ana-
lyzed with linear models. Previous research has fit-
ted real-time PCR data into ANCOVA, multiple re-
gression and ANOVA models [8–10]. Fitting real-
time PCR data into linear models is a significant
step toward the precise real-time PCR data analy-
sis with appropriate quality controls. However,
most of the current models are designed to derive
ΔΔCt directly with the assumption of 100% PAE, and
therefore cannot be used in the analysis of low-
quality data. Yuan et al. [8] proposed an efficiency
adjusted ANCOVA model for low quality data
analysis, but the model still requires equal AE for
each gene between different samples, an assump-
tion which might be commonly violated. In reality,

real-time PCR data could have PCR amplification
efficiencies deviating from 1 for different cDNA
samples and different genes. This is probably the
rule rather than the exception. The assumptions
over AE therefore compromise the application of
these statistical models in practice. Novel models
with universal applications based on Eq. (7) are
necessary for AE integrated statistical analysis.
Moreover, previous linear models by Yuan et al. [8]
were developed for analyzing Ct values from stan-
dard curve design only, statistical models need to be
developed for efficiency adjusted analysis of fluo-
rescence data. Here we present unbalanced linear
combination of group effect for a two-way ANOVA
model and intercept estimation of multiple regres-
sion model as two options for the ΔΔCtadjusted calcu-
lation for fluorescence data analysis with single
concentration design. The same models can also
be used for standard curve design data. The pros
and cons of each statistical model will be discussed
later.

2.4.1 Two-way ANOVA model and unbalanced linear
combination

The fluorescence measurements do not yield an
explicit Ct number, however, we can consider Ct as

Biotechnology
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Table 1. Input fluorescence data of single concentration design

Cycle Fluorescence Sample Group

1 0.003895 1 1
···
16 0.251703 1 1
17 0.488688 1 1
18 0.925395 1 1
···
42 7.278038 2 4

The data include PCR cycle number and fluorescence measurements (in arbi-
trary units) for each PCR cycle. We have included two samples for each group,
and four groups for comparison. The four groups are the reference and gene in
the control sample, as well as the reference and target gene in the treatment
sample.

Table 2. Input data for standard curve design

Treatment Gene Concentration Ct Group

Water (2 h) UBQ 16 16.8847 1
Water (2 h) UBQ 16 17.205 1
Water (2 h) UBQ 4 18.972 1
Water (2 h) UBQ 4 19.0513 1
Water (2 h) UBQ 1 21.2514 1

···
Ala (2 h) MT7 1 25.367 4

The data has the relative concentration and Ct numbers as well as different
treatments and genes.

Figure 1. Linear region for PCR quantification.
The exponential phase of PCR reaction can be
used to analyze PAE, and it is a linear region in the
plot of logarithm-based fluorescence against cycle
number.
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the cycle number for a given PCR product amount.
When the sample effect is randomized, the sample
dataset in Supporting Information File 3 can be fit
into the models in Fig. 2B. The traditional ΔΔCt can
be calculated by the ANOVA model by contrasting
and estimating the linear combinations of means
for cycle number of different groups as shown in
Eq. (11).The ΔΔCtadjusted can be tested and estimat-
ed in the same way except that the combination of
means needs to be adjusted by PAE as shown in Eq.
(12). The adjustment in combination often results
in an unbalanced linear combination.

ΔΔCt = (μ1 − μ2) − (μ3 − μ4) = μ1 − μ2 − μ3 + μ4 = 0 (11)

ΔCtadjusted = μ1 × PAE1 − μ2 × PAE2 − μ3 ×
PAE3 + μ4 × PAE4 = 0

(12)

where μ1–μ4 is the mean of cycle number for groups
1–4, respectively, PAE1–PAE4 are the percentile am-
plification efficiency for groups 1–4, respectively.

Both equations fit into the general linear com-
bination model as shown in Eq. (13). For ΔΔCt esti-
mation in Eq. (11), the linear combination is bal-
anced with ci equals to 1 or −1, representing 100%

PAE. For ΔΔCtadjusted estimation in Eq. (12), the lin-
ear combination is unbalanced with ci equals to
PAE or –PAE for each group.

(13)

Equation 12 can be realized by unbalanced linear
combination of group effects as shown in Fig. 2B for
fluorescent data of single concentration design.
The null hypothesis for the test in Eq. (12) is that
the ΔΔCtadjusted equals to 0 when offset by combined
mean of PAE, which indicates no changes in target
gene expression between the treatment and con-
trol sample. The alternative hypothesis is that the
target gene expression changes significantly be-
tween the samples. A low P value will favor the al-
ternative hypothesis. The model is implemented in
SAS as shown in Supporting Information File 1.
The model statement establishes the statistical
model for the two-way ANOVA, where CY (cycle
number) depends on the logarithm 2-based trans-
formation of PCR product amount (fluorescence
reading), different groups, and their combinatorial
effects. The ΔΔCtadjusted are then derived from con-
trasting and estimating the unbalanced linear com-

ΔΔCt =
=
∑ci i
i

r

μ
1

Figure 2. Statistical estimation of real-
time PCR data using ANOVA model with
cycle or Ct number as dependent vari-
able. (A) Presents the efficiency adjusted
ΔΔCt estimation from unbalanced linear
combination of two-way ANOVA model
for data from standard curve design. (B)
Presents efficiency adjusted ΔΔCt estima-
tion for fluorescence data from the single
concentration design.

Figure 3. Statistical estimation of real-time PCR
data and balanced linear combination of intercept
to derive efficiency adjusted ΔΔCt. (A) Presents
the multiple regression model for standard curve
design and the estimation efficiency adjusted
ΔΔCt. (B) Presents the same model for analyzing
fluorescence data with single concentration
design.
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bination of PAE adjusted means. The SAS output
provides both point and confidence level estima-
tion for ΔΔCtadjusted as shown in Table 4. Moreover,
the SAS output also gives a P value to estimate the
statistical significance of gene expression differ-
ences.

2.4.2 Multiple regression model and linear combination of in-
tercepts

The ANOVA model provides a conceptually simple
approach to estimate the ΔΔCtadjusted. However, the
method needs to calculate the grouped PAE for
each gene and treatment combination before the
ΔΔCtadjusted calculation. Moreover, since the PAE is
estimated for a group and the variation of PAE
within the group is not integrated in the model, the
model might potentially underestimate the varia-
tion of ΔΔCtadjusted. A more conceptually complicat-
ed, but more direct approach for ΔΔCtadjusted esti-
mation is through linear combination of intercepts
in multiple regression model. Considering the sim-
ple linear regression model in Eq. (10), the βcXc
represents the cycle number multiplied by PAE. If
we take into account the simple linear regression
for the four groups respectively as shown in Eq.
(14), a linear combination of these four groups by
adding groups 1 and 4 and subtracting groups 2 3
will give the Eq. (14), since the Plog for each group
will be equal at a given Ct number and terms can be
cancelled out.

(14)

In Eq. (14), the right portion of the equation is the
ΔΔCtadjusted as shown in Eqs. (12 and 13), and the left
portion of the equation is the linear combination of
the intercepts, which will be equal to the linear
combination of the intercept of the multiple re-
gression model as shown in Fig. 3B if no interaction
among groups existed. Basically, for multiple linear
regression model, ΔΔCtadjusted can be estimated
from linear combination the intercept of different
groups. Conceptually, for either model in Fig. 3, if
cycle or Ct number equals to 0, the product or tem-
plate concentration represents the initial amount.
Therefore, the contrast and combination of inter-
cepts will derive ΔΔCtadjusted as also visualized in
Figs. 4A and B.

The model can be easily implemented in SAS as
shown in Supporting Information Files 1 and 2.The

P X
P X

G G xG cG

G G xG cG

log

log

1 0 1 1 1

2 0 2 2 2

= + +
= + +

β β ε
β β εε
β β ε
β β

P X
P X

G G xG cG

G G xG cG

log

log

3 0 3 3 3

4 0 4 4

= + +
= + 44

0 1 0 2 0 3 0 4

1 1 2

+
⇒ − − − +
= −

ε
β β β β

β β
( )G G G G

xG cG xG cX X GG xG cG xG cGX X2 3 3 4 4− +β β

model statement in the procedure helps to estab-
lish multiple regression for logarithm transformed
PCR product amount (PLOG) with group and cycle
number (CY).The output of linear combination in-
cludes the mean and confidence interval estima-
tion of ΔΔCtadjusted as shown in Table 3. It should be
noted that the variation for the ΔΔCtadjusted is much
larger in this analysis as compared to the two-way
ANOVA model, and the resulting test is not signif-
icant.

2.5 Statistical modeling of ΔΔCtadjusted for standard curve

Even though the ΔΔCtadjusted can be calculated in
the real-time PCR experiments with fluorescence
data from single concentration design, the design
may lead to more variation than the standard curve
design, which allows a large dynamic range of the
quantification [5]. Moreover, the standard curve al-
lows to observe amplification inhibition at earlier
stage of PCR, while fluorescence data only reflect
the efficiency above the baseline level. The previ-
ously published linear models can be modified to
estimate ΔΔCtadjusted for standard curve design [8].

The principle and procedure for fluorescence
data analysis can be applied to analyze ΔΔCtadjusted
for the standard curve design as shown in Figs. 2
and 3. The same unbalanced linear combination of
cycle number can be used for ΔΔCtadjusted estima-
tion in the statistical model with Ct as the depend-
ent variable. The linear combination of intercepts
in the statistical model with logarithm transformed
concentration as the dependent variable can also
be used for ΔΔCtadjusted estimation. The only differ-
ence between the modeling of fluorescence data
and standard curve data is that logarithm trans-
formed fluorescence data are in linear proportion
to the cycle, while the logarithm transformed con-
centration is in reverse linear proportion to the Ct
number. Therefore, the linear combination equa-
tion is reversed in modeling the two types of data.

Biotechnology
Journal Biotechnol. J. 2008, 3, 112–123
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Table 3. PAE estimation

Group Design PAE STD P value

1 Standard curve 0.9216 0.0349 0.089
2 Standard curve 0.8774 0.0348 0.024*
3 Standard curve 0.9067 0.0223 0.014*
4 Standard curve 0.8983 0.0305 0.029*
1 Single concentration 0.9571 0.0352 0.254
2 Single concentration 0.9469 0.0284 0.095
3 Single concentration 0.8782 0.0105 <0.0001**
4 Single concentration 0.8902 0.0271 0.023*

The PAE estimation for each group is listed for both designs. Ct values were
used for standard curve design and single concentration stands for fluores-
cence data from single concentration design. * indicates a p value smaller than
0.05 and ** indicates a p value smaller than 0.01.
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Figure 4. The visualization of data. The intercepts for the multiple regression models in single concentration design and standard curve design are shown
in (A) and (B), respectively. (C) Presents the 95% confidence interval (D) and (E) are the regression data point for fluorescence data and Ct value of stan-
dard curve, which shows clear differences among four groups. (F) Is the residual plot for regression model. PLOG is the abbreviation for logarithm trans-
formed PCR product, lcon is the abbreviation for logarithm transformed concentration, and LPFL ist the abbreviation for logarithm transformed fluores-
cence signal.
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The statistical models are implemented in SAS as
shown in Supporting Information file 2, and the
data output is summarized in Table 4.

2.6 Statistical modeling of ΔΔCtadjusted for mixed design

The fluorescence data from a standard curve
design can also be analyzed: a mixed design. A
three-way ANOVA model can be used and the 
ΔΔCtadjusted can be estimated through the linear
combination of intercepts. The main advantage is
that the design enlarges the sample size for 
ΔΔCtadjusted estimation and allows estimation of AE
using two approaches. The three-way ANOVA
model is implemented in the Supporting Informa-
tion File 5, which is based on dataset in Supporting
Information File 6. The analysis results yield a
smaller P value as compared to the linear combi-
nation of intercepts from either fluorescence data
of single concentration design or Ct value from
standard curve design because the increase in the
effective sample size.

2.7 Statistical modeling of ΔΔCtweighted for data with multiple
controls

Besides the AE, another important issue of real-
time PCR analysis is having the proper internal

control. Multiple genes as internal controls have
been proposed to reduce systemic error and im-
prove the accuracy of analysis [14]. Most of the cur-
rent models are developed for experimental de-
signs including only one control. A modified linear
combination of group effects in the ANOVA model
allows the analysis of real-time PCR data with mul-
tiple controls as shown in Eq. (15), where W is the
weight equaling to 1 divided by number of control
genes. In the case inclusion of two internal genes,
the weight should be 0.5. Supporting Information
File 8 provides a data set with multiple controls,
and Supporting Information File 7 is the SAS im-
plementation of the Eq. (15).

ΔΔCtadjusted = μ1 × PAE1 − μ2 × PAE2 − μ3 ×
PAE3 × W + μ4 × PAE4 ×
W − μ5 × PAE5 × W + μ6 ×
PAE6 × W

(15)

where 3, 4, 5, and 6 represent the data from two ref-
erence genes for both control and treatment sam-
ples. When multiple reference genes are included,
W can be equal to 1 divided by total number of ref-
erence genes.
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Table 4. Comparison of different methods

Type Design Test Mean Error 95% CI P Ratio Reference

ΔΔCt Single ANOVA −1.90 0.17 (−2.24, −1.55) <0.01 3.73 [9]
concentration

Standard curve T-test −2.34 0.27 (−2.53, −2.15) <0.01 5.06 [8]

Wilcoxon −2.11 N/A (−2.56, −2.36) <0.01 4.32 [8]

ANCOVA −2.26 0.19 (−2.65, −1.86) <0.01 4.78 [8]

ΔΔCtadjusted Single ANOVA −1.25 0.16 (−1.57, −0.93) <0.01 2.38 This paper
concentration (PAE adjusted, UBLC)

Multiple −1.17 0.95 (−3.1, 0.76) 0.23 2.25 This paper
regression (LCI)

Standard curve ANCOVA −1.47 0.17 (−1.82, −1.11) <0.01 2.77 This paper
(PAE adjusted, UBLC)

Multiple regression −3.41 1.68 (−6.79, 0.15) 0.06 7.42 This paper
(LCI)

Mixed design Multiple regression −1.19 0.63 (−2.43, 0.05) 0.06 2.28 This paper
(LCI)

ΔΔCtweighted Standard curve ANOVA weighted −2.84 0.39 (−3.64, −2.67) <0.01 7.16 This paper

Standard curve ANOVA Weighted −2.23 0.36 (−2.98, −1.49) <0.01 4.69 This paper
PAE adjusted

Statistical analysis results are presented for different models for ΔΔCt and ΔΔCtadjusted. The mean estimation, standard error, 95% confidence interval, P value, predict-
ed ratio, and references are presented in the table. UBLC stands for unbalanced linear combination. LCI stands for linear combination of intercepts.
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3 Results and discussion

The main advantage of the statistical models pre-
sented is the ability to perform analysis without AE
restrictions, which is an important improvement
from our previous statistical treatment of real-time
PCR data [8]. The concepts and modeling of 
ΔΔCtadjusted and ΔΔCtweighted are novel.

3.1 The estimation of PAE

The estimation of AE is presented in Table 3, where
the statistical test of slope’s equivalence to 1 ren-
ders the P value. A small P value indicates PAE is
significantly different from 1 or 100%. Even though
the interaction effects between group and concen-
tration are not significant under the ANOVA mod-
el for standard curve design, the data in Table 3 in-
dicate real differences among sample AE. More-
over, the PAEs are significantly different from 100%
in several cases.The efficiency adjusted data analy-
sis is therefore highly recommended for such data.
It would, therefore, not be appropriate to apply our
previously reported models [8] in this case. Hence,
we analyzed the data with different statistical mod-
els for efficiency adjusted ΔΔCt presented above.

3.2 The comparison of statistical models for ΔΔCtadjusted and
ΔΔCt

The comparison of the ΔΔCt and ΔΔCtadjusted as
shown in Table 4 highlights the importance for
efficiency adjustment in the analysis of this data
set. The ΔΔCt estimation is different from the 
ΔΔCtadjusted. The ΔΔCt estimation gives a lower P
value and larger differences among gene expres-
sion values as compared to the ΔΔCtadjusted with
PAE adjustment by unbalanced linear combina-
tion. The efficiency adjustment for this particular
dataset is important for appropriate data interpre-
tation. As shown by Table 1, most of the PCRs for
this dataset have PAE less than 1 and amplification
efficiencies also differ from one another. In the
case of low AE, the unadjusted ΔΔCt might overes-
timate or underestimate the target gene expression
differences depending on the PAE for each group
of PCR. Since the error for PCR increases expo-
nentially during the reaction, a 10% PAE difference
might result in huge data distortion if the Ct differ-
ences are large enough.

If we examine Figs. 4A and B, the intercepts rep-
resent the initial template amount and are used to
calculate ΔΔCtadjusted in linear combination of inter-
cepts for multiple regression.The differences of in-
tercepts could be quite different from those in our
observed range, which illustrates the effects of am-

plified error. For ΔΔCt analysis, we are analyzing
data based on the observed regions. If calculations
are not adjusted by PAE, the resulting interpreta-
tion could be very misleading.The efficiency prob-
lem shown in this dataset is quite common from our
experience, and it underlines the fact that it is im-
possible to make assumptions of equal PCR ampli-
fication efficiencies or 100% PAE unless proper
tests are performed. Thus, the appropriateness of
using the quantification method is highly depend-
ent on data quality. In the case where high quality
data are available, ΔΔCt and ΔΔCtadjusted would yield
similar results [8], and the traditional ΔΔCt method
could be used since the analysis would not over-
estimate the errors. However, for messy data, the
ΔΔCtadjusted method is a much better choice, because
otherwise assuming a 100% PAE will miscalculate
the ratio estimation significantly.

3.3 The errors for real-time PCR

The differences between ΔΔCtadjusted and ΔΔCt also
stress the importance of experimental condition
optimization and experimental design. In this par-
ticular dataset, we used a 2 × 3 design where dupli-
cate biological samples and three concentrations
were tested. We found that increasing sample size
significantly decreases the error and makes the test
more robust. For this dataset, there should be dif-
ferential target gene expression among different
treatments, however, it was not significant for sev-
eral test models using our small sample size. More-
over, it is also important to optimize the cDNA syn-
thesis and the primer design. If the PCRs for all
groups have PAE approximately 1, the ΔΔCt method
can be directly applied and the test will be more ro-
bust.

3.4 The comparison of different statistical methods for
ΔΔCtadjusted

Different methods can be used for ΔΔCtadjusted cal-
culation. As discussed before, it becomes apparent
that integrating PAE in the ANOVA model with un-
balanced linear combination will give a much
smaller error than the linear combination of inter-
cepts from the multiple regression model. The dis-
crepancy could result from two effects, the under-
estimation of error for caused by the pooling of PAE
in ANOVA model, and the inflation of the error by
linear combination of intercepts.The results shown
in Table 3 confirmed our concerns.All the standard
errors in PAE integrated ANOVA models were
smaller than that from the multiple regression
model.When sample sizes are small, PAE-adjusted
ANOVA may be a better choice of analysis because

112_123_200700169_Stewart.qxd:BIOT_2006  11.01.2008  7:46 Uhr  Seite 121



error values will be less. However, it is a less con-
servative approach.

How could error be inflated in the linear combi-
nation of intercepts? In Fig. 4C, we can see the 95%
confidence interval for the predicted value will
form a curve with the smallest interval at the mean
observation. This imposes a particular problem for
the linear combination of intercepts in the multiple
regression model, since the errors at the intercept
may be much inflated because of their large dis-
tance from the mean of observed values.The linear
combinations of intercepts by multiple regression
model may overestimate the error for ΔΔCtadjusted.
As we can see from Figs. 4D and E, there is a clear
difference in the target gene expression between
the samples, however, the error is enlarged by the
linear combination of intercepts resulting in a sta-
tistically nonsignificance result in the analysis. Un-
less we have a larger sample size and smaller stan-
dard error for the predicted variables, the multiple
regression models should be used only with great
caution. However, multiple regression is the most
conservative model for the ΔΔCtadjusted calculation
since errors for all the effects are analyzed. In or-
der to increase the sample size and dynamic range,
a mixed design of analysis of fluorescence at dif-
ferent concentrations might be a valid alternative
for linear combination of intercepts with multiple
regression model.

Considering the limitations for both types of
ΔΔCtadjusted, efficiency adjusted quantification
should not be the default choice for real-time PCR
data analysis. If experiments are carefully con-
trolled, and equal amplification efficiencies are as-
sured that are required by the traditional ΔΔCt
method, the ΔΔCt method may be a better choice for
data analysis because it is effective within the ob-
served data range and would not introduce addi-
tional errors. The test provided both in Methods
Part III and our previous publication [8] will help to
test whether PAE is 100% and equal among all
groups.

3.5 The weighted ΔΔCt

Besides the efficiency adjustment, more internal
control genes in the experiment may also result in
more robust data [14]. The ΔΔCtweighted can be used
to perform linear combination of multiple controls
to derive point estimation and test for the gene ex-
pression ratio. As shown in Table 4, adding another
internal control gene coding for tubulin resulted in
a different ratio estimation. The assumption that
the internal control gene is always expressed con-
sistently can be as easily violated, which would lead
to interpretive errors.Therefore, including multiple

internal control is always a recommended practice,
especially for clinical studies requiring accuracy
for diagnoses, treatments, etc. Regardless of the
number of control genes, proper efficiency adjust-
ment can often improve the data quality (Table 4).

3.6 The future of real-time PCR data analysis

Since the metric of statistical analysis of real-time
PCR data is ΔΔCtadjusted, not the ratio of gene ex-
pression, the confidence interval and standard er-
ror should therefore be presented for ΔΔCtadjusted
instead of the ratio. However, the confidence level
for the ratio can be derived from the confidence in-
terval of ΔΔCtadjusted.

Our research herein highlights the importance
of integrating AE in the statistical analysis of real-
time PCR data. In addition, it helps to explain a
common phenomenon in functional genomics, in
which the real-time PCR-derived gene expression
ratio (treated vs. control) is often higher than that
of an equivalent microarray experiment [17, 18].
One explanation is that real-time PCR tends to
overestimate the gene expression ratio if AE is not
integrated into the data analysis, and thus, the typ-
ical interpretation of gene up-regulation appears to
be greater than it is in reality. An alternative expla-
nation was that the ratio expansion for real-time
PCR could be due to lower AE for the gene at a low-
er expression level in the two groups being com-
pared. In either scenario, the problem becomes
more severe when the gene expression ratios are
high, since the larger Ct differences can result in
amplified error. Using the methods outlined here
should yield real-time RT-PCR estimates that are
more congruent with microarray data. With some
modification, the method can also be used to esti-
mate the AE at different cycle number as previous-
ly described, or to analyze the multiplex data with
more accuracy [19, 20]. The research also under-
scores the importance for the scientific community
to establish standard procedures for real-time PCR
data analysis, since an improper treatment may
lead to amplified error in case of real-time PCR
data analysis. In turn, this could lead to faulty bio-
logical interpretations and conclusions.
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